Finite mathematics

Synthese 103 (3):389 - 420 (1995)
Abstract
A system of finite mathematics is proposed that has all of the power of classical mathematics. I believe that finite mathematics is not committed to any form of infinity, actual or potential, either within its theories or in the metalanguage employed to specify them. I show in detail that its commitments to the infinite are no stronger than those of primitive recursive arithmetic. The finite mathematics of sets is comprehensible and usable on its own terms, without appeal to any form of the infinite. That makes it possible to, without circularity, obtain the axioms of full Zermelo-Fraenkel Set Theory with the Axiom of Choice (ZFC) by extrapolating (in a precisely defined technical sense) from natural principles concerning finite sets, including indefinitely large ones. The existence of such a method of extrapolation makes it possible to give a comparatively direct account of how we obtain knowledge of the mathematical infinite. The starting point for finite mathematics is Mycielski's work on locally finite theories.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    21 ( #68,757 of 1,089,053 )

    Recent downloads (6 months)

    1 ( #69,801 of 1,089,053 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.