Generalized reduction theorems for model-theoretic analogs of the class of coanalytic sets

Journal of Symbolic Logic 58 (1):81-98 (1993)
Let A be an admissible set. A sentence of the form ∀R̄φ is a ∀1(A) (∀s 1(A),∀1(Lω1ω)) sentence if φ ∈ A (φ is $\bigvee\Phi$ , where Φ is an A-r.e. set of sentences from A; φ ∈ Lω1ω). A sentence of the form ∃R̄φ is an ∃2(A) (∃s 2(A),∃2(Lω1ω)) sentence if φ is a ∀1(A) (∀s 1(A),∀1(Lω1ω)) sentence. A class of structures is, for example, a ∀1(A) class if it is the class of models of a ∀1(A) sentence. Thus ∀1(A) is a class of classes of structures, and so forth. Let Mi be the structure $\langle i, 0$. Let Γ be a class of classes of structures. We say that a sequence $J_1,\ldots,J_i,\ldots, i < \omega$, of classes of structures is a Γ sequence if $J_i \in \Gamma, i < \omega$, and there is I ∈ Γ such that M ∈ Ji if and only if [M, Mi] ∈ I, where [,] is the disjoint sum. A class Γ of classes of structures has the easy uniformization property if for every Γ sequence $J_1,\ldots,J_i, \ldots, i < \omega$, there is a Γ sequence $J'_1,\ldots,J'_i,\ldots, i < \omega$, such that $J'_i \subseteq J_i, i < \omega, \bigcup J'_i = \bigcup J_i$, and the J'i are pairwise disjoint. The easy uniformization property is an effective version of Kuratowski's generalized reduction property that is closely related to Moschovakis's (topological) easy uniformization property. We show over countable structures that ∀1(A) and ∃2(A) have the easy uniformization property if A is a countable admissible set with an infinite member, that ∀s 1(Lα) and ∃s 2(Lα) have the easy uniformization property if α is countable, admissible, and not weakly stable, and that ∀1(Lω1ω) and ∃2(Lω1ω) have the easy uniformization property. The results proved are more general. The result for ∀s 1(Lα) answers a question of Vaught (1980)
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2275326
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

5 ( #377,318 of 1,726,249 )

Recent downloads (6 months)

1 ( #369,877 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.