A limit on relative genericity in the recursively enumerable sets

Journal of Symbolic Logic 54 (2):376-395 (1989)
Work in the setting of the recursively enumerable sets and their Turing degrees. A set X is low if X', its Turning jump, is recursive in $\varnothing'$ and high if X' computes $\varnothing''$ . Attempting to find a property between being low and being recursive, Bickford and Mills produced the following definition. W is deep, if for each recursively enumerable set A, the jump of $A \bigoplus W$ is recursive in the jump of A. We prove that there are no deep degrees other than the recursive one. Given a set W, we enumerate a set A and approximate its jump. The construction of A is governed by strategies, indexed by the Turning functionals Φ. Simplifying the situation, a typical strategy converts a failure to recursively compute W into a constraint on the enumeration of A, so that $(W \bigoplus A)'$ is forced to disagree with Φ(-; A'). The conversion has some ambiguity; in particular, A cannot be found uniformly from W. We also show that there is a "moderately" deep degree: There is a low nonzero degree whose join with any other low degree is not high
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index


    Total downloads


    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.