Abstract logics, logic maps, and logic homomorphisms

Logica Universalis 1 (2):243-276 (2007)
.  What is a logic? Which properties are preserved by maps between logics? What is the right notion for equivalence of logics? In order to give satisfactory answers we generalize and further develop the topological approach of [4] and present the foundations of a general theory of abstract logics which is based on the abstract concept of a theory. Each abstract logic determines a topology on the set of theories. We develop a theory of logic maps and show in what way they induce (continuous, open) functions on the corresponding topological spaces. We also establish connections to well-known notions such as translations of logics and the satisfaction axiom of institutions [5]. Logic homomorphisms are maps that behave in some sense like continuous functions and preserve more topological structure than logic maps in general. We introduce the notion of a logic isomorphism as a (not necessarily bijective) function on the sets of formulas that induces a homeomorphism between the respective topological spaces and gives rise to an equivalence relation on abstract logics. Therefore, we propose logic isomorphisms as an adequate and precise notion for equivalence of logics. Finally, we compare this concept with another recent proposal presented in [2].
Keywords Abstract logics  logic maps  logic translations  logic homomorphism  universal logic  topology  institutions
Categories (categorize this paper)
DOI 10.1007/s11787-007-0013-z
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,305
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

37 ( #128,246 of 1,932,585 )

Recent downloads (6 months)

2 ( #333,232 of 1,932,585 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.