On the algebraizability of annotated logics

Studia Logica 59 (3):359-386 (1997)
Annotated logics were introduced by V.S. Subrahmanian as logical foundations for computer programming. One of the difficulties of these systems from the logical point of view is that they are not structural, i.e., their consequence relations are not closed under substitutions. In this paper we give systems of annotated logics that are equivalent to those of Subrahmanian in the sense that everything provable in one type of system has a translation that is provable in the other. Moreover these new systems are structural. We prove that these systems are weakly congruential, namely, they have an infinite system of congruence 1-formulas. Moreover, we prove that an annotated logic is algebraizable (i.e., it has a finite system of congruence formulas,) if and only if the lattice of annotation constants is finite.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index


    Total downloads

    1 ( #306,128 of 1,088,398 )

    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.