A reductive semantics for counting and choice in answer set programming

Abstract
In a recent paper, Ferraris, Lee and Lifschitz conjectured that the concept of a stable model of a first-order formula can be used to treat some answer set programming expressions as abbreviations. We follow up on that suggestion and introduce an answer set programming language that defines the mean- ing of counting and choice by reducing these constructs to first-order formulas. For the new language, the concept of a safe program is defined, and its semantic role is investigated. We compare the new language with the concept of a disjunc- tive program with aggregates introduced by Faber, Leone and Pfeifer, and discuss the possibility of implementing a frag- ment of the language by translating it into the input language of the answer set solver DLV. The language is also compared with cardinality constraint programs defined by Syrjänen.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,808
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

2 ( #361,304 of 1,099,786 )

Recent downloads (6 months)

1 ( #303,541 of 1,099,786 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.