A reductive semantics for counting and choice in answer set programming

In a recent paper, Ferraris, Lee and Lifschitz conjectured that the concept of a stable model of a first-order formula can be used to treat some answer set programming expressions as abbreviations. We follow up on that suggestion and introduce an answer set programming language that defines the mean- ing of counting and choice by reducing these constructs to first-order formulas. For the new language, the concept of a safe program is defined, and its semantic role is investigated. We compare the new language with the concept of a disjunc- tive program with aggregates introduced by Faber, Leone and Pfeifer, and discuss the possibility of implementing a frag- ment of the language by translating it into the input language of the answer set solver DLV. The language is also compared with cardinality constraint programs defined by Syrjänen.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,658
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

4 ( #424,619 of 1,726,237 )

Recent downloads (6 months)

2 ( #289,836 of 1,726,237 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.