Uniformization and Skolem functions in the class of trees

Journal of Symbolic Logic 63 (1):103-127 (1998)
Abstract
The monadic second-order theory of trees allows quantification over elements and over arbitrary subsets. We classify the class of trees with respect to the question: does a tree T have definable Skolem functions (by a monadic formula with parameters)? This continues [6] where the question was asked only with respect to choice functions. A natural subclass is defined and proved to be the class of trees with definable Skolem functions. Along the way we investigate the spectrum of definable well orderings of well ordered chains
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,392
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

9 ( #159,846 of 1,102,932 )

Recent downloads (6 months)

7 ( #36,687 of 1,102,932 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.