Topological paradoxes of time measurement

This paper applies the ideas presented in "Time, Euclidean Geometry and Relativity" ID 1290 , to a specific problem in temporal measurement. It is shown that, under very natural assumptions, that if there is a minimum time interval T in ones collection of clocks, it is impossible to measure an interval of time 1/2T save by the accidental construction of a clock which pulses in that interval. This situation is contrasted to that for length, in which either the Euclidean Algorithm or a ruler and compass construction can be used to construct a lengh 1/2L from a length Lo.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

12 ( #205,927 of 1,726,249 )

Recent downloads (6 months)

7 ( #99,332 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.