Remarks on the church-Rosser property

Journal of Symbolic Logic 55 (1):106-112 (1990)
Abstract
A reduction algebra is defined as a set with a collection of partial unary functions (called reduction operators). Motivated by the lambda calculus, the Church-Rosser property is defined for a reduction algebra and a characterization is given for those reduction algebras satisfying CRP and having a measure respecting the reductions. The characterization is used to give (with 20/20 hindsight) a more direct proof of the strong normalization theorem for the impredicative second order intuitionistic propositional calculus
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,068
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

7 ( #194,809 of 1,101,833 )

Recent downloads (6 months)

1 ( #306,516 of 1,101,833 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.