Dimensionally invariant numerical laws correspond to meaningful qualitative relations

Philosophy of Science 45 (1):1-16 (1978)
In formal theories of measurement meaningfulness is usually formulated in terms of numerical statements that are invariant under admissible transformations of the numerical representation. This is equivalent to qualitative relations that are invariant under automorphisms of the measurement structure. This concept of meaningfulness, appropriately generalized, is studied in spaces constructed from a number of conjoint and extensive structures some of which are suitably interrelated by distribution laws. Such spaces model the dimensional structures of classical physics. It is shown that this qualitative concept corresponds exactly with the numerical concept of dimensionally invariant laws of physics
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1086/288776
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

92 ( #35,692 of 1,726,249 )

Recent downloads (6 months)

1 ( #369,877 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.