Cantor's proof in the full definable universe

Abstract
Cantor’s proof that the powerset of the set of all natural numbers is uncountable yields a version of Richard’s paradox when restricted to the full definable universe, that is, to the universe containing all objects that can be defined not just in one formal language but by means of the full expressive power of natural language: this universe seems to be countable on one account and uncountable on another. We argue that the claim that definitional contexts impose restrictions on the scope of quantifiers reveals a natural way out.
Keywords Cantor’s theorem  Richard’s paradox  definability  countability  quantifiers  indefinite extensibility  constructive ordinals
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    W. D. Hart (2010). The Evolution of Logic. Cambridge University Press.
    Analytics

    Monthly downloads

    Added to index

    2010-10-05

    Total downloads

    23 ( #63,373 of 1,088,831 )

    Recent downloads (6 months)

    1 ( #69,665 of 1,088,831 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.