Anti-admissible sets

Journal of Symbolic Logic 64 (2):407-435 (1999)
Abstract
Aczel's theory of hypersets provides an interesting alternative to the standard view of sets as inductively constructed, well-founded objects, thus providing a convienent formalism in which to consider non-well-founded versions of classically well-founded constructions, such as the "circular logic" of [3]. This theory and ZFC are mutually interpretable; in particular, any model of ZFC has a canonical "extension" to a non-well-founded universe. The construction of this model does not immediately generalize to weaker set theories such as the theory of admissible sets. In this paper, we formulate a version of Aczel's antifoundation axiom suitable for the theory of admissible sets. We investigate the properties of models of the axiom system KPU - , that is, KPU with foundation replaced by an appropriate strengthening of the extensionality axiom. Finally, we forge connections between "non-wellfounded sets over the admissible set A" and the fragment L A of the modal language L ∞
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,085
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

8 ( #170,847 of 1,101,673 )

Recent downloads (6 months)

1 ( #292,019 of 1,101,673 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.