A tableau decision algorithm for modalized ALC with constant domains

Studia Logica 72 (2):199-232 (2002)
The aim of this paper is to construct a tableau decision algorithm for the modal description logic K ALC with constant domains. More precisely, we present a tableau procedure that is capable of deciding, given an ALC-formula with extra modal operators (which are applied only to concepts and TBox axioms, but not to roles), whether is satisfiable in a model with constant domains and arbitrary accessibility relations. Tableau-based algorithms have been shown to be practical even for logics of rather high complexity. This gives us grounds to believe that, although the satisfiability problem for K ALC is known to be NEXPTIME-complete, by providing a tableau decision algorithm we demonstrate that highly expressive description logics with modal operators have a chance to be implementable. The paper gives a solution to an open problem of Baader and Laux [5].
Keywords Philosophy   Logic   Mathematical Logic and Foundations   Computational Linguistics
Categories (categorize this paper)
DOI 10.1023/A:1021308527417
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

14 ( #184,535 of 1,726,249 )

Recent downloads (6 months)

6 ( #118,705 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.