A tableau decision algorithm for modalized ALC with constant domains

Studia Logica 72 (2):199-232 (2002)
Abstract
The aim of this paper is to construct a tableau decision algorithm for the modal description logic K ALC with constant domains. More precisely, we present a tableau procedure that is capable of deciding, given an ALC-formula with extra modal operators (which are applied only to concepts and TBox axioms, but not to roles), whether is satisfiable in a model with constant domains and arbitrary accessibility relations. Tableau-based algorithms have been shown to be practical even for logics of rather high complexity. This gives us grounds to believe that, although the satisfiability problem for K ALC is known to be NEXPTIME-complete, by providing a tableau decision algorithm we demonstrate that highly expressive description logics with modal operators have a chance to be implementable. The paper gives a solution to an open problem of Baader and Laux [5].
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,825
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2009-01-28

Total downloads

7 ( #192,693 of 1,100,087 )

Recent downloads (6 months)

7 ( #40,751 of 1,100,087 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.