Logical extensions of Aristotle's square

Logica Universalis 2 (1):167-187 (2008)
.  We start from the geometrical-logical extension of Aristotle’s square in [6,15] and [14], and study them from both syntactic and semantic points of view. Recall that Aristotle’s square under its modal form has the following four vertices: A is □α, E is , I is and O is , where α is a logical formula and □ is a modality which can be defined axiomatically within a particular logic known as S5 (classical or intuitionistic, depending on whether is involutive or not) modal logic. [3] has proposed extensions which can be interpreted respectively within paraconsistent and paracomplete logical frameworks. [15] has shown that these extensions are subfigures of a tetraicosahedron whose vertices are actually obtained by closure of by the logical operations , under the assumption of classical S5 modal logic. We pursue these researches on the geometrical-logical extensions of Aristotle’s square: first we list all modal squares of opposition. We show that if the vertices of that geometrical figure are logical formulae and if the sub-alternation edges are interpreted as logical implication relations, then the underlying logic is none other than classical logic. Then we consider a higher-order extension introduced by [14], and we show that the same tetraicosahedron plays a key role when additional modal operators are introduced. Finally we discuss the relation between the logic underlying these extensions and the resulting geometrical-logical figures.
Keywords Aristotle’s square  modal logic
Categories (categorize this paper)
DOI 10.1007/s11787-007-0022-y
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

22 ( #132,874 of 1,726,249 )

Recent downloads (6 months)

5 ( #147,227 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.