Striving for truth in the practice of mathematics: Kant and Frege

Grazer Philosophische Studien 75 (1):65-92 (2007)
Abstract
My aim is to understand the practice of mathematics in a way that sheds light on the fact that it is at once a priori and capable of extending our knowledge. The account that is sketched draws first on the idea, derived from Kant, that a calculation or demonstration can yield new knowledge in virtue of the fact that the system of signs it employs involves primitive parts (e.g., the ten digits of arithmetic or the points, lines, angles, and areas of Euclidean geometry) that combine into wholes (numerals or drawn Euclidean figures) that are themselves parts of larger wholes (the array of written numerals in a calculation or the diagram of a Euclidean demonstration). Because wholes such as numerals and Euclidean figures both have parts and are parts of larger wholes, their parts can be recombined into new wholes in ways that enable extensions of our knowledge. I show that sentences of Frege's Begriffsschrift can also be read as involving three such levels of articulation; because they have these three levels, we can understand in essentially the same way how a proof from concepts alone can extend our knowledge.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,084
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

36 ( #51,734 of 1,101,880 )

Recent downloads (6 months)

4 ( #91,837 of 1,101,880 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.