Combinatorial and recursive aspects of the automorphism group of the countable atomless Boolean algebra

Journal of Symbolic Logic 51 (2):292-301 (1986)
Abstract
Given an admissible indexing φ of the countable atomless Boolean algebra B, an automorphism F of B is said to be recursively presented (relative to φ) if there exists a recursive function $p \in \operatorname{Sym}(\omega)$ such that F ⚬ φ = φ ⚬ p. Our key result on recursiveness: Both the subset of $\operatorname{Aut}(\mathscr{B})$ consisting of all those automorphisms which are recursively presented relative to some indexing, and its complement, the set of all "totally nonrecursive" automorphisms, are uncountable. This arises as a consequence of the following combinatorial investigations: (1) A comparison of the cycle structures of f and f̄, where f is a permutation of some free basis of B and f̄ is the automorphism of B induced by f. (2) An explicit description of the permutations of ω whose conjugacy classes in $\operatorname{Sym}(\omega)$ are (a) uncountable, (b) countably infinite, and (c) finite
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    5 ( #178,779 of 1,088,810 )

    Recent downloads (6 months)

    1 ( #69,666 of 1,088,810 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.