Probabilities for multiple properties: The models of Hesse and Carnap and Kemeny [Book Review]

Erkenntnis 55 (2):183-215 (2001)
Abstract
In 1959 Carnap published a probability model that was meant to allow forreasoning by analogy involving two independent properties. Maher (2000)derived a generalized version of this model axiomatically and defended themodel''s adequacy. It is thus natural to now consider how the model mightbe extended to the case of more than two properties. A simple extension waspublished by Hess (1964); this paper argues that it is inadequate. Amore sophisticated one was developed jointly by Carnap and Kemeny in theearly 1950s but never published; this paper gives the first published descriptionof Carnap and Kemeny''s model and argues that it too is inadequate. Since noother way of extending the two-property model is currently known, the conclusionof this paper is that a satisfactory extension to multiple properties requires somenew approach.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Patrick Maher (2010). Explication of Inductive Probability. Journal of Philosophical Logic 39 (6):593 - 616.

    View all 8 citations

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    5 ( #178,845 of 1,089,057 )

    Recent downloads (6 months)

    1 ( #69,801 of 1,089,057 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.