Definability and interpolation in non-classical logics

Studia Logica 82 (2):271 - 291 (2006)
Abstract
Algebraic approach to study of classical and non-classical logical calculi was developed and systematically presented by Helena Rasiowa in [48], [47]. It is very fruitful in investigation of non-classical logics because it makes possible to study large families of logics in an uniform way. In such research one can replace logics with suitable classes of algebras and apply powerful machinery of universal algebra. In this paper we present an overview of results on interpolation and definability in modal and positive logics,and also in extensions of Johansson's minimal logic. All these logics are strongly complete under algebraic semantics. It allows to combine syntactic methods with studying varieties of algebras and to flnd algebraic equivalents for interpolation and related properties. Moreover, we give exhaustive solution to interpolation and some related problems for many families of propositional logics and calculi.
Keywords interpolation  definability  amalgamation  modal logic  intuitionistic logic  non-classical logics
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,808
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

18 ( #96,900 of 1,099,785 )

Recent downloads (6 months)

11 ( #21,120 of 1,099,785 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.