Natural Logic for Textual Inference

This paper presents the first use of a computational model of natural logic—a system of logical inference which operates over natural language—for textual inference. Most current approaches to the PAS- CAL RTE textual inference task achieve robustness by sacrificing semantic precision; while broadly effective, they are easily confounded by ubiquitous inferences involving monotonicity. At the other extreme, systems which rely on first-order logic and theorem proving are precise, but excessively brittle. This work aims at a middle way. Our system finds a low-cost edit sequence which transforms the premise into the hypothesis; learns to classify entailment relations across atomic edits; and composes atomic entailments into a top-level entailment judgment. We provide the first reported results for any system on the FraCaS test suite. We also evaluate on RTE3 data, and show that hybridizing an existing RTE system with our natural logic system yields significant performance gains.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,201
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

22 ( #213,183 of 1,940,944 )

Recent downloads (6 months)

5 ( #197,835 of 1,940,944 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.