Robust Textual Inference via Graph Matching

We present a system for deciding whether a given sentence can be inferred from text. Each sentence is represented as a directed graph (extracted from a dependency parser) in which the nodes represent words or phrases, and the links represent syntactic and semantic relationships. We develop a learned graph matching model to approximate entailment by the amount of the sentence’s semantic content which is contained in the text. We present results on the Recognizing Textual Entailment dataset (Dagan et al., 2005), and show that our approach outperforms Bag- Of-Words and TF-IDF models.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,280
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

3 ( #675,209 of 1,932,526 )

Recent downloads (6 months)

2 ( #333,140 of 1,932,526 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.