A simplified duality for implicative lattices and l-groups

Studia Logica 56 (1-2):185 - 204 (1996)
Abstract
A topological duality is presented for a wide class of lattice-ordered structures including lattice-ordered groups. In this new approach, which simplifies considerably previous results of the author, the dual space is obtained by endowing the Priestley space of the underlying lattice with two binary functions, linked by set-theoretical complement and acting as symmetrical partners. In the particular case of l-groups, one of these functions is the usual product of sets and the axiomatization of the dual space is given by very simple first-order sentences, saying essentially that both functions are associative and that the space is a residuated semigroup with respect to each of them.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index

    2009-01-28

    Total downloads

    1 ( #305,979 of 1,088,372 )

    Recent downloads (6 months)

    1 ( #69,449 of 1,088,372 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.