On the emptiness of the stability set of order d

Theory and Decision 52 (4):313-326 (2002)
Abstract
We know from Li's theorem (1993) that the stability set of order d may be empty for some preference profiles. However, one may wonder whether such situations are just rare oddities or not. In this paper, we partially answer this question by considering the restrictive case where the number of alternatives is the smallest compatible with an empty stability set. More precisely, we provide an upper bound on the probability for having an empty stability set of order d for the majority game under the Impartial Weak Ordering Culture assumption. This upper bound is already extremely low for small population and tends to zero as the number of individuals goes to infinity
Keywords quota games  core  stability set of order d  probability
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,018
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Marc Lange (1999). Why Are the Laws of Nature so Important to Science? Philosophy and Phenomenological Research 59 (3):625-652.
Jouko Väänänen (2012). Second Order Logic or Set Theory? Bulletin of Symbolic Logic 18 (1):91-121.
Bas C. Van Fraassen (2006). Vague Expectation Value Loss. Philosophical Studies 127 (3):483 - 491.
Joseph S. Ullian (1969). Is Any Set Theory True? Philosophy of Science 36 (3):271-279.
Ignacio Jané (1993). A Critical Appraisal of Second-Order Logic. History and Philosophy of Logic 14 (1):67-86.
Gilbert Laffond (2000). Majority Voting on Orders. Theory and Decision 49 (3):249-287.
Dror Ben-Arié & Haim Judah (1993). ▵1 3-Stability. Journal of Symbolic Logic 58 (3):941 - 954.
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2010-09-02

Total downloads

1 ( #438,891 of 1,101,073 )

Recent downloads (6 months)

1 ( #290,699 of 1,101,073 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.