On the inherent incompleteness of scientific theories

Abstract
We examine the question of whether scientific theories can ever be complete. For two closely related reasons, we will argue that they cannot. The first reason is the inability to determine what are “valid empirical observations”, a result that is based on a self-reference Gödel/Tarski-like proof. The second reason is the existence of “meta-empirical” evidence of the inherent incompleteness of observations. These reasons, along with theoretical incompleteness, are intimately connected to the notion of belief and to theses within the philosophy of science: the Quine-Duhem (and underdetermination) thesis and the observational/theoretical distinction failure. Some puzzling aspects of the philosophical theses will become clearer in light of these connections. Other results that follow are: no absolute measure of the informational content of empirical data, no absolute measure of the entropy of physical systems, and no complete computer simulation of the natural world are possible. The connections with the mathematical theorems of Gödel and Tarski reveal the existence of other connections between scientific and mathematical incompleteness: computational irreducibility, complexity, infinity, arbitrariness and self-reference. Finally, suggestions will be offered of where a more rigorous (or formal) “proof” of scientific incompleteness can be found.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  •   Try with proxy.
  •   Try with proxy.
  •   Try with proxy.
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    10 ( #120,424 of 1,089,153 )

    Recent downloads (6 months)

    0

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.