Severe testing as a basic concept in a neyman–pearson philosophy of induction

Despite the widespread use of key concepts of the Neyman–Pearson (N–P) statistical paradigm—type I and II errors, significance levels, power, confidence levels—they have been the subject of philosophical controversy and debate for over 60 years. Both current and long-standing problems of N–P tests stem from unclarity and confusion, even among N–P adherents, as to how a test's (pre-data) error probabilities are to be used for (post-data) inductive inference as opposed to inductive behavior. We argue that the relevance of error probabilities is to ensure that only statistical hypotheses that have passed severe or probative tests are inferred from the data. The severity criterion supplies a meta-statistical principle for evaluating proposed statistical inferences, avoiding classic fallacies from tests that are overly sensitive, as well as those not sensitive enough to particular errors and discrepancies. Introduction and overview 1.1 Behavioristic and inferential rationales for Neyman–Pearson (N–P) tests 1.2 Severity rationale: induction as severe testing 1.3 Severity as a meta-statistical concept: three required restrictions on the N–P paradigm Error statistical tests from the severity perspective 2.1 N–P test T(): type I, II error probabilities and power 2.2 Specifying test T() using p-values Neyman's post-data use of power 3.1 Neyman: does failure to reject H warrant confirming H? Severe testing as a basic concept for an adequate post-data inference 4.1 The severity interpretation of acceptance (SIA) for test T() 4.2 The fallacy of acceptance (i.e., an insignificant difference): Ms Rosy 4.3 Severity and power Fallacy of rejection: statistical vs. substantive significance 5.1 Taking a rejection of H0 as evidence for a substantive claim or theory 5.2 A statistically significant difference from H0 may fail to indicate a substantively important magnitude 5.3 Principle for the severity interpretation of a rejection (SIR) 5.4 Comparing significant results with different sample sizes in T(): large n problem 5.5 General testing rules for T(), using the severe testing concept The severe testing concept and confidence intervals 6.1 Dualities between one and two-sided intervals and tests 6.2 Avoiding shortcomings of confidence intervals Beyond the N–P paradigm: pure significance, and misspecification tests Concluding comments: have we shown severity to be a basic concept in a N–P philosophy of induction?
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1093/bjps/axl003
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,305
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA
D. Mayo (2014). Some Surprising Facts About Surprising Facts. Studies in History and Philosophy of Science Part A 45 (1):79-86.

View all 20 citations / Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

71 ( #67,311 of 1,932,596 )

Recent downloads (6 months)

2 ( #333,233 of 1,932,596 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.