What is required of a foundation for mathematics?

Philosophia Mathematica 2 (1):16-35 (1994)
The business of mathematics is definition and proof, and its foundations comprise the principles which govern them. Modern mathematics is founded upon set theory. In particular, both the axiomatic method and mathematical logic belong, by their very natures, to the theory of sets. Accordingly, foundational set theory is not, and cannot logically be, an axiomatic theory. Failure to grasp this point leads obly to confusion. The idea of a set is that of an extensional plurality, limited and definite in size, composed of well defined objects.It is the extension of Greek notion of 'number' (arithmos) into Cantor's 'transfinite'.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1093/philmat/2.1.16
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,280
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

57 ( #84,085 of 1,932,522 )

Recent downloads (6 months)

9 ( #102,910 of 1,932,522 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.