Paradox and Potential Infinity

Journal of Philosophical Logic 42 (1):195-219 (2013)
We describe a variety of sets internal to models of intuitionistic set theory that (1) manifest some of the crucial behaviors of potentially infinite sets as described in the foundational literature going back to Aristotle, and (2) provide models for systems of predicative arithmetic. We close with a brief discussion of Church’s Thesis for predicative arithmetic.
Keywords Potential infinity  Intuitionism  Predicative arithmetic  Church’s thesis
Categories (categorize this paper)
DOI 10.1007/s10992-011-9218-y
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,707
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

View all 6 references / Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
John Bowin (2007). Aristotelian Infinity. Oxford Studies in Ancient Philosophy 32:233-250.
Richard Heck (2011). Ramified Frege Arithmetic. Journal of Philosophical Logic 40 (6):715-735.
Wolfgang Achtner (2005). Infinity in Science and Religion. The Creative Role of Thinking About Infinity. Neue Zeitschrift für Systematicsche Theologie Und Religionsphilosophie 47 (4):392-411.

Monthly downloads

Added to index


Total downloads

41 ( #81,917 of 1,726,249 )

Recent downloads (6 months)

1 ( #369,877 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.