The consistency of arithmetic

The paper presents a proof of the consistency of Peano Arithmetic (PA) that does not lie in deducing its consistency as a theorem in an axiomatic system. PA’s consistency cannot be proved in PA, and to deduce its consistency in some stronger system PA+ is self-defeating, since the stronger system may itself be inconsistent. Instead, a semantic proof is constructed which demonstrates consistency not relative to the consistency of some other system but in an absolute sense
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,904
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

112 ( #20,641 of 1,725,560 )

Recent downloads (6 months)

42 ( #28,056 of 1,725,560 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.