The Non-unique Universe

Foundations of Physics 40 (6):629-637 (2010)
Abstract
The purpose of this paper is to elucidate, by means of concepts and theorems drawn from mathematical logic, the conditions under which the existence of a multiverse is a logical necessity in mathematical physics, and the implications of Gödel’s incompleteness theorem for theories of everything.Three conclusions are obtained in the final section: (i) the theory of the structure of our universe might be an undecidable theory, and this constitutes a potential epistemological limit for mathematical physics, but because such a theory must be complete, there is no ontological barrier to the existence of a final theory of everything; (ii) in terms of mathematical logic, there are two different types of multiverse: classes of non-isomorphic but elementarily equivalent models, and classes of model which are both non-isomorphic and elementarily inequivalent; (iii) for a hypothetical theory of everything to have only one possible model, and to thereby negate the possible existence of a multiverse, that theory must be such that it admits only a finite model
Keywords Multiverses  Godel’s incompleteness theorem  Theories of everything  Mathematical structures  Mathematical logic
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,322
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2009-07-03

Total downloads

1 ( #407,338 of 1,096,518 )

Recent downloads (6 months)

1 ( #246,097 of 1,096,518 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.