The standard model of particle physics in other universes

The purpose of this paper is to demonstrate how the mathematical objects and structures associated with the particle physics in other universes, can be inferred from the mathematical objects and structures associated with the particle physics in our own universe. As such, this paper is a continuation of the research programme announced in McCabe (2004), which implemented this idea in the case of cosmology. The paper begins with an introduction that outlines the structuralist doctrine which this research programme depends upon. Section 2 explains how free elementary particles in our universe correspond to irreducible representations of the double cover of the local space-time symmetry group, and relates the configuration representation to the momentum representation. The difficulties of treating elementary particles in curved space-time, and the Fock space second-quantization are also explained. Section 2.1 explores the particle physics of universes in which the local symmetry group is the entire Poincare group or the isochronous Poincare group. Section 2.2 considers free particles in universes with a different dimension or geometrical signature to our own. Section 3 introduces gauge fields, and, via Derdzinski's interaction bundle approach, explains how connections satisfying the Yang-Mills equations correspond to the irreducible representations for `gauge bosons'. To explore the possible gauge fields, section 3.1 explains the classification of principal G-bundles over 4-manifolds, and section 3.2 expounds the structure theorem of compact Lie groups. Section 3.3 summarises the consequences for classifying gauge fields in other universes, and section 3.4 infers the structures used to represent interacting particles in other universes. The paper concludes in Section 3.5 by explaining the standard model gauge groups and irreducible representations which define interacting particle multiplets, and specifies the possibilities for such multiplets in other universes.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,879
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

17 ( #156,877 of 1,725,158 )

Recent downloads (6 months)

9 ( #72,301 of 1,725,158 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.