The model theory of differential fields with finitely many commuting derivations

Journal of Symbolic Logic 65 (2):885-913 (2000)
Abstract
In this paper we set out the basic model theory of differential fields of characteristic 0, which have finitely many commuting derivations. We give axioms for the theory of differentially closed differential fields with m derivations and show that this theory is ω-stable, model complete, and quantifier-eliminable, and that it admits elimination of imaginaries. We give a characterization of forking and compute the rank of this theory to be ω m + 1
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,365
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

6 ( #206,643 of 1,102,744 )

Recent downloads (6 months)

1 ( #296,833 of 1,102,744 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.