⊃E is admissible in “true” relevant arithmetic

Journal of Philosophical Logic 27 (4):327 - 351 (1998)
Abstract
The system R## of "true" relevant arithmetic is got by adding the ω-rule "Infer VxAx from AO, A1, A2, ...." to the system R# of "relevant Peano arithmetic". The rule ⊃E (or "gamma") is admissible for R##. This contrasts with the counterexample to ⊃E for R# (Friedman & Meyer, "Whither Relevant Arithmetic"). There is a Way Up part of the proof, which selects an arbitrary non-theorem C of R## and which builds by generalizing Henkin and Belnap arguments a prime theory T which still lacks C. (The key to the Way Up is a Witness Protection Program, using the ω-rule.) But T may be TOO BIG, whence there is a Way Down argument that produces a better theory TR, such that R## ⊆ TR ⊆ T. (The key to the Way Down is a Metavaluation, on which membership in T is combined with ordinary truth-functional conditions to determine TR.) The result is a theory that is Just Right, whence it never happens that A ⊃ C and A are theorems of R## but C is a non-theorem
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    9 ( #128,915 of 1,089,057 )

    Recent downloads (6 months)

    1 ( #69,801 of 1,089,057 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.