"A mathematical proof must be surveyable" what Wittgenstein meant by this and what it implies

Grazer Philosophische Studien 71 (1):57-86 (2006)
Abstract
In Part III of his Remarks on the Foundations of Mathematics Wittgenstein deals with what he calls the surveyability of proofs. By this he means that mathematical proofs can be reproduced with certainty and in the manner in which we reproduce pictures. There are remarkable similarities between Wittgenstein's view of proofs and Hilbert's, but Wittgenstein, unlike Hilbert, uses his view mainly in critical intent. He tries to undermine foundational systems in mathematics, like logicist or set theoretic ones, by stressing the unsurveyability of the proof-patterns occurring in them. Wittgenstein presents two main arguments against foundational endeavours of this sort. First, he shows that there are problems with the criteria of identity for the unsurveyable proof-patterns, and second, he points out that by making these patterns surveyable, we rely on concepts and procedures which go beyond the foundational frameworks. When we take these concepts and procedures seriously, mathematics does not appear as a uniform system, but as a mixture of different techniques.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    92 ( #10,502 of 1,088,831 )

    Recent downloads (6 months)

    2 ( #42,743 of 1,088,831 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.