Mathematical intuition and natural numbers: A critical discussion [Book Review]

Erkenntnis 73 (2):265–292 (2010)
Charles Parsons’ book “Mathematical Thought and Its Objects” of 2008 (Cambridge University Press, New York) is critically discussed by concentrating on one of Parsons’ main themes: the role of intuition in our understanding of arithmetic (“intuition” in the specific sense of Kant and Hilbert). Parsons argues for a version of structuralism which is restricted by the condition that some paradigmatic structure should be presented that makes clear the actual existence of structures of the necessary sort. Parsons’ paradigmatic structure is the so-called ‘intuitive model’ of arithmetic realized by Hilbert’s strings of strokes. This paper argues that Hilbert’s strings, considered as given in intuition, cannot play the role Parsons assigns to them: the criteria of identity of these strings do not have the sharpness that Parsons wants to see in them, and Parsons inadvertently projects abstract structures into his ‘intuitive model’. This diagnosis is exemplified with respect to (a) Parsons’ distinction between addition and multiplication on the one hand and exponentiation on the other and (b) his analysis of arithmetical knowledge in simple cases like “7 + 5 = 12”. All in all, it is claimed that Parsons book contains many important insights with respect to, for example, different versions structuralism, the notion of “natural number” and its uniqueness, induction, predicativity and other things, for which he is rightly famous, but that his way of drawing on the notion of intuition leaves too many questions unanswered.
Keywords Philosophy   Logic   Ethics   Ontology   Epistemology   Philosophy
Categories (categorize this paper)
DOI 10.2307/40929388
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,822
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

View all 16 references / Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

79 ( #37,685 of 1,724,741 )

Recent downloads (6 months)

7 ( #93,245 of 1,724,741 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.