Entailment and bivalence

Journal of Philosophical Logic 31 (4):289-300 (2002)
Abstract
My purpose in this paper is to argue that the classical notion of entailment is not suitable for non-bivalent logics, to propose an appropriate alternative and to suggest a generalized entailment notion suitable to bivalent and non-bivalent logics alike. In classical two valued logic, one can not infer a false statement from one that is not false, any more than one can infer from a true statement a statement that is not true. In classical logic in fact preserving truth and preserving non-falsity are one and the same thing. They are not the same in non-bivalent logics however and I will argue that the classical notion of entailment that preserves only truth is not strong enough for such a logic. I will show that if we retain the classical notion of entailment in a logic that has three values, true, false and a third value in between, an inconsistency can be derived that can be resolved only by measures that seriously disable the logic. I will show this for a logic designed to allow for semantic presuppositions, then I will show that we get the same result in any three valued logic with the same value ordering. I will finally suggest how the notion of entailment should be generalized so that this problem may be avoided. The strengthened notion of entailment I am proposing is a conservative extension of the classical notion that preserves not only truth but the order of all values in a logic, so that the value of an entailed statement must alway be at least as great as the value of the sequence of statements entailing it. A notion of entailment this strong or stronger will, I believe, be found to be applicable to non-classical logics generally. In the opinion of Dana Scott, no really workable three valued logic has yet been developed. It is hard to disagree with this. A workable three valued logic however could perhaps be developed however, if we had a notion of entailment suitable to non-bivalent logics
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    11 ( #112,960 of 1,088,403 )

    Recent downloads (6 months)

    3 ( #30,936 of 1,088,403 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.