Classical harmony: Rules of inference and the meaning of the logical constants

Synthese 100 (1):49 - 94 (1994)
The thesis that, in a system of natural deduction, the meaning of a logical constant is given by some or all of its introduction and elimination rules has been developed recently in the work of Dummett, Prawitz, Tennant, and others, by the addition of harmony constraints. Introduction and elimination rules for a logical constant must be in harmony. By deploying harmony constraints, these authors have arrived at logics no stronger than intuitionist propositional logic. Classical logic, they maintain, cannot be justified from this proof-theoretic perspective. This paper argues that, while classical logic can be formulated so as to satisfy a number of harmony constraints, the meanings of the standard logical constants cannot all be given by their introduction and/or elimination rules; negation, in particular, comes under close scrutiny.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    76 ( #14,606 of 1,088,600 )

    Recent downloads (6 months)

    4 ( #24,197 of 1,088,600 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.