Probability as a Measure of Information Added

Abstract
Some propositions add more information to bodies of propositions than do others. We start with intuitive considerations on qualitative comparisons of information added . Central to these are considerations bearing on conjunctions and on negations. We find that we can discern two distinct, incompatible, notions of information added. From the comparative notions we pass to quantitative measurement of information added. In this we borrow heavily from the literature on quantitative representations of qualitative, comparative conditional probability. We look at two ways to obtain a quantitative conception of information added. One, the most direct, mirrors Bernard Koopman’s construction of conditional probability: by making a strong structural assumption, it leads to a measure that is, transparently, some function of a function P which is, formally, an assignment of conditional probability (in fact, a Popper function). P reverses the information added order and mislocates the natural zero of the scale so some transformation of this scale is needed but the derivation of P falls out so readily that no particular transformation suggests itself. The Cox–Good–Aczél method assumes the existence of a quantitative measure matching the qualitative relation, and builds on the structural constraints to obtain a measure of information that can be rescaled as, formally, an assignment of conditional probability. A classical result of Cantor’s, subsequently strengthened by Debreu, goes some way towards justifying the assumption of the existence of a quantitative scale. What the two approaches give us is a pointer towards a novel interpretation of probability as a rescaling of a measure of information added
Keywords Information  Probability  Comparative probability  Koopman  Cox
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,456
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Yehoshua Bar-Hillel & Rudolf Carnap (1953). Semantic Information. British Journal for the Philosophy of Science 4 (14):147-157.
Michael Dummett (1976). What is a Theory of Meaning? (II). In Gareth Evans & John McDowell (eds.), Truth and Meaning: Essays in Semantics. Oxford: Clarendon Press.

View all 8 references

Citations of this work BETA
Similar books and articles
M. von Thun (2001). Probability Theory and Probability Semantics. Australasian Journal of Philosophy 79 (4):570 – 571.
Analytics

Monthly downloads

Added to index

2012-03-23

Total downloads

18 ( #94,901 of 1,102,423 )

Recent downloads (6 months)

3 ( #121,187 of 1,102,423 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.