The foundations of probability and quantum mechanics

Journal of Philosophical Logic 22 (2):129 - 168 (1993)
Taking as starting point two familiar interpretations of probability, we develop these in a perhaps unfamiliar way to arrive ultimately at an improbable claim concerning the proper axiomatization of probability theory: the domain of definition of a point-valued probability distribution is an orthomodular partially ordered set. Similar claims have been made in the light of quantum mechanics but here the motivation is intrinsically probabilistic. This being so the main task is to investigate what light, if any, this sheds on quantum mechanics. In particular it is important to know under what conditions these point-valued distributions can be thought of as derived from distribution-pairs of upper and lower probabilities on boolean algebras. Generalising known results this investigation unsurprisingly proves unrewarding. In the light of this failure the next topic investigated is how these generalized probability distributions are to be interpreted.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1007/BF01049259
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,280
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

53 ( #90,445 of 1,932,501 )

Recent downloads (6 months)

1 ( #456,270 of 1,932,501 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.