The undecidability of iterated modal relativization

Studia Logica 79 (3):373 - 407 (2005)
Abstract
In dynamic epistemic logic and other fields, it is natural to consider relativization as an operator taking sentences to sentences. When using the ideas and methods of dynamic logic, one would like to iterate operators. This leads to iterated relativization. We are also concerned with the transitive closure operation, due to its connection to common knowledge. We show that for three fragments of the logic of iterated relativization and transitive closure, the satisfiability problems are fi1 11–complete. Two of these fragments do not include transitive closure. We also show that the question of whether a sentence in these fragments has a finite (tree) model is fi0 01–complete. These results go via reduction to problems concerning domino systems.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,361
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Johan van Benthem (2007). Dynamic Logic for Belief Revision. Journal of Applied Non-Classical Logics 17 (2):129-155.

View all 7 citations

Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2009-01-28

Total downloads

1 ( #445,363 of 1,102,722 )

Recent downloads (6 months)

0

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.