Optimizing Local Probability Models for Statistical Parsing

Abstract
This paper studies the properties and performance of models for estimating local probability distributions which are used as components of larger probabilistic systems — history-based generative parsing models. We report experimental results showing that memory-based learning outperforms many commonly used methods for this task (Witten-Bell, Jelinek-Mercer with fixed weights, decision trees, and log-linear models). However, we can connect these results with the commonly used general class of deleted interpolation models by showing that certain types of memory-based learning, including the kind that performed so well in our experiments, are instances of this class. In addition, we illustrate the divergences between joint and conditional data likelihood and accuracy performance achieved by such models, suggesting that smoothing based on optimizing accuracy directError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMaply might greatly improve performance.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2010-12-22

    Total downloads

    4 ( #198,443 of 1,088,370 )

    Recent downloads (6 months)

    1 ( #69,449 of 1,088,370 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.