The principle of excluded middle in quantum logic

Journal of Philosophical Logic 7 (1):181 - 208 (1978)
The principle of excluded middle is the logical interpretation of the law V ≤ A v ヿA in an orthocomplemented lattice and, hence, in the lattice of the subspaces of a Hilbert space which correspond to quantum mechanical propositions. We use the dialogic approach to logic in order to show that, in addition to the already established laws of effective quantum logic, the principle of excluded middle can also be founded. The dialogic approach is based on the very conditions under which propositions can be confirmed by measurements. From the fact that the principle of. excluded middle can be confirmed for elementary propositions which are proved by quantum mechanical measurements, we conclude that this principle is inherited by all finite compound propositions. For this proof it is essential that, in the dialog-game about a connective, a finite confirmation strategy for the mutual commensurability of the subpropositions is used
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1007/BF00245927
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 22,734
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

46 ( #98,112 of 1,937,424 )

Recent downloads (6 months)

6 ( #99,121 of 1,937,424 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.