On iterating semiproper preorders

Journal of Symbolic Logic 67 (4):1431-1468 (2002)
Let T be an $\omega_{1}-Souslin$ tree. We show the property of forcing notions; "is $\lbrace\omega_{1}\rbrace-semi-proper$ and preserves T" is preserved by a new kind of revised countable support iteration of arbitrary length. As an application we have a forcing axiom which is compatible with the existence of an $\omega_{1}-Souslin$ tree for preorders as wide as possible
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    4 ( #198,645 of 1,089,155 )

    Recent downloads (6 months)

    1 ( #69,735 of 1,089,155 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.