Against a minimalist reading of bell's theorem: Lessons from fine

Synthese 128 (3):343 - 379 (2001)
Abstract
Since the validity of Bell's inequalities implies the existence of joint probabilities for non-commuting observables, there is no universal consensus as to what the violation of these inequalities signifies. While the majority view is that the violation teaches us an important lesson about the possibility of explanations, if not about metaphysical issues, there is also a minimalist position claiming that the violation is to be expected from simple facts about probability theory. This minimalist position is backed by theorems due to A. Fine and I. Pitowsky.Our paper shows that the minimalist position cannot be sustained. To this end,we give a formally rigorous interpretation of joint probabilities in thecombined modal and spatiotemporal framework of `stochastic outcomes inbranching space-time' (SOBST) (Kowalski and Placek, 1999; Placek, 2000). We show in this framework that the claim that there can be no joint probabilities fornon-commuting observables is incorrect. The lesson from Fine's theorem is notthat Bell's inequalities will be violated anyhow, but that an adequate modelfor the Bell/Aspect experiment must not define global joint probabilities. Thus we investigate the class of stochastic hidden variable models, whichprima facie do not define such joint probabilities. The reasonwhy these models fail supports the majority view: Bell's inequalities are notjust a mathematical artifact.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,322
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Leszek Wroński & Tomasz Placek (2009). On Minkowskian Branching Structures☆. Studies in History and Philosophy of Science Part B 40 (3):251-258.
Thomas Muller (2007). A Branching Space-Times View on Quantum Error Correction. Studies in History and Philosophy of Science Part B 38 (3):635-652.
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

40 ( #40,260 of 1,096,520 )

Recent downloads (6 months)

22 ( #5,082 of 1,096,520 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.