Carnap's metrical conventionalism versus differential topology

Abstract
Geometry was a main source of inspiration for Carnap’s conventionalism. Taking Poincaré as his witness Carnap asserted in his dissertation Der Raum (Carnap 1922) that the metrical structure of space is conventional while the underlying topological structure describes "objective" facts. With only minor modifications he stuck to this account throughout his life. The aim of this paper is to disprove Carnap's contention by invoking some classical theorems of differential topology. By this means his metrical conventionalism turns out to be indefensible for mathematical reasons. This implies that the relation between to-pology and geometry cannot be conceptualized as analogous to the relation between the meaning of a proposition and its expression in some language as logical empiricists used to say.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive Thomas Mormann, Carnap's metrical conventionalism versus differential topology
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

128 ( #6,502 of 1,096,804 )

Recent downloads (6 months)

17 ( #7,799 of 1,096,804 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.