On the meaning of Hilbert's consistency problem (paris, 1900)

Synthese 137 (1-2):129 - 139 (2003)
Abstract
The theory that ``consistency implies existence'' was put forward by Hilbert on various occasions around the start of the last century, and it was strongly and explicitly emphasized in his correspondence with Frege. Since (Gödel's) completeness theorem, abstractly speaking, forms the basis of this theory, it has become common practice to assume that Hilbert took for granted the semantic completeness of second order logic. In this paper I maintain that this widely held view is untrue to the facts, and that the clue to explain what Hilbert meant by linking together consistency and existence is to be found in the role played by the completeness axiom within both geometrical and arithmetical axiom systems.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,747
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

27 ( #63,203 of 1,098,844 )

Recent downloads (6 months)

8 ( #26,993 of 1,098,844 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.