On the meaning of Hilbert's consistency problem (paris, 1900)

Synthese 137 (1-2):129 - 139 (2003)
The theory that ``consistency implies existence'' was put forward by Hilbert on various occasions around the start of the last century, and it was strongly and explicitly emphasized in his correspondence with Frege. Since (Gödel's) completeness theorem, abstractly speaking, forms the basis of this theory, it has become common practice to assume that Hilbert took for granted the semantic completeness of second order logic. In this paper I maintain that this widely held view is untrue to the facts, and that the clue to explain what Hilbert meant by linking together consistency and existence is to be found in the role played by the completeness axiom within both geometrical and arithmetical axiom systems.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    19 ( #74,754 of 1,088,372 )

    Recent downloads (6 months)

    1 ( #69,449 of 1,088,372 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.