Inferentialism and the categoricity problem: Reply to Raatikainen

Analysis 69 (3):480-488 (2009)
Abstract
It is sometimes held that rules of inference determine the meaning of the logical constants: the meaning of, say, conjunction is fully determined by either its introduction or its elimination rules, or both; similarly for the other connectives. In a recent paper, Panu Raatikainen (2008) argues that this view - call it logical inferentialism - is undermined by some "very little known" considerations by Carnap (1943) to the effect that "in a definite sense, it is not true that the standard rules of inference" themselves suffice to "determine the meanings of [the] logical constants" (p. 2). In a nutshell, Carnap showed that the rules allow for non-normal interpretations of negation and disjunction. Raatikainen concludes that "no ordinary formalization of logic ... is sufficient to `fully formalize' all the essential properties of the logical constants" (ibid.). We suggest that this is a mistake. Pace Raatikainen, intuitionists like Dummett and Prawitz need not worry about Carnap's problem. And although bilateral solutions for classical inferentialists - as proposed by Timothy Smiley and Ian Rumfitt - seem inadequate, it is not excluded that classical inferentialists may be in a position to address the problem too.
Keywords Categoricity Problem  Logical inferentialism  Bilateralism  Fundamental Assumption  Intuitionism  External negation
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,561
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-07-01

Total downloads

71 ( #19,160 of 1,098,129 )

Recent downloads (6 months)

10 ( #18,492 of 1,098,129 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.