Higher order modal logic

Abstract
A logic is called higher order if it allows for quantification (and possibly abstraction) over higher order objects, such as functions of individuals, relations between individuals, functions of functions, relations between functions, etc. Higher order logic (often also called type theory or the Theory of Types) began with Frege, was formalized in Russell [46] and Whitehead and Russell [52] early in the previous century, and received its canonical formulation in Church [14].1 While classical type theory has since long been overshadowed by set theory as a foundation of mathematics, recent decades have shown remarkable comebacks in the fields of mechanized reasoning (see, e.g., Benzm¨.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,346
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

21 ( #78,099 of 1,096,624 )

Recent downloads (6 months)

2 ( #158,594 of 1,096,624 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.