Synonymy, common knowledge, and the social construction of meaning

Abstract
In this paper it is shown how a formal theory of interpretation in Montague’s style can be reconciled with a view on meaning as a social construct. We sketch a formal theory in which agents can have their own theory of interpretation and in which groups can have common theories of interpretation. Frege solved the problem how different persons can have access to the same proposition by placing the proposition in a Platonic realm, independent from all language users but accessible to all of them. Here we explore the alternative of letting meaning be socially constructed. The meaning of a sentence is accessible to each member of a linguistic community because the way the sentence is to be interpreted is common knowledge among the members of that community. Misunderstandings can arise when the semantic knowledge of two or more individuals is not completely in sync.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,316
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

26 ( #63,203 of 1,096,453 )

Recent downloads (6 months)

1 ( #231,754 of 1,096,453 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.