Is curvature intrinsic to physical space?

Philosophy of Science 46 (3):439-458 (1979)
Abstract
Wesley C. Salmon (1977) has written a characteristically elegant and ingenious paper 'The Curvature of Physical Space'. He argues in it that the curvature of a space cannot be intrinsic to it. Salmon relates his view that space is affinely amorphous to Grunbaum's view (Grunbaum 1973, esp. Ch. 16 & 22) that it is metrically amorphous and acknowledges parallels between the arguments which have been offered for each opinion. I wish to dispute these conclusions on philosophical grounds quite as much as on geometrical ones. Although I concentrate most on arguing for a well defined, intrinsic affinity for physical space the arguments extend easily to support a well defined, intrinsic metric
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,928
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

15 ( #107,426 of 1,100,561 )

Recent downloads (6 months)

3 ( #115,236 of 1,100,561 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.