Size matters

Abstract
Does Cantorian set theory alter our intuitive conception of number? Yes. In particular, Cantorian set theory revises our intuitive conception of when two sets have the same size (cardinal number). Consider a variant of Galileo’s Paradox, which notes that the members of the set of natural numbers, N, can be put in one-to-one correspondence with the members of the set of even numbers, E.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,978
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

34 ( #50,641 of 1,100,947 )

Recent downloads (6 months)

1 ( #290,065 of 1,100,947 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.