Structural properties and σ02 enumeration degrees

Journal of Symbolic Logic 65 (1):285 - 292 (2000)
Abstract
We prove that each Σ 0 2 set which is hypersimple relative to $\emptyset$ ' is noncuppable in the structure of the Σ 0 2 enumeration degrees. This gives a connection between properties of Σ 0 2 sets under inclusion and and the Σ 0 2 enumeration degrees. We also prove that some low non-computably enumerable enumeration degree contains no set which is simple relative to $\emptyset$ '
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,398
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

10 ( #142,220 of 1,096,905 )

Recent downloads (6 months)

7 ( #31,275 of 1,096,905 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.